Kinetic Modeling of Methylene Blue and Crystal Violet Dyes Adsorption on Alginate-Fixed Water Hyacinth in Single and Binary Systems

نویسندگان

  • Courtie Mahamadi
  • Epias Mawere
چکیده

Removal of Methylene Blue (MB) and Crystal Violet (CV) dyes from monocomponent and binary aqueous solutions by water hyacinth-E. Crassipes roots fixed on alginate (a low-cost adsorbent) has been investigated. The extent of adsorption was evaluated as a function of solution pH, initial dye concentration, and bead biomass loading. Kinetic sorption data were analysed by widely used models: pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The results showed that pseudo-second-order model better described the biosorption experimental data than the pseudo-first-order kinetic model for both dyes, whilst the Elovich model fitted the biosorption experimental data at lower dye concentrations. The intraparticle diffusion model indicated that sorption of CV and MB was characterized by rapid surface adsorption coupled with slow film diffusion process at higher initial dye concentration and at all initial bead biomass loading. The range of mean free energy values confirmed physical adsorption as the mechanism for dye removal from solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanodimensional AlMCM-41 material for adsorption of dyes: Thermodynamic and kinetic studies

AlMCM-41 was applied for adsorption of methylene blue (MB) and auramine (AU) in single and binary component systems. In the single component systems, AlMCM-41 represents higher adsorption capacity for MB than AU with the maximal adsorption capacity of 2.07×10−4 and 1.15×10−4 mol/g at 25 ˚C for MB and AU, respectively. In the binary component system, MB and AU exhibit compe...

متن کامل

Nanodimensional AlMCM-41 material for adsorption of dyes: Thermodynamic and kinetic studies

AlMCM-41 was applied for adsorption of methylene blue (MB) and auramine (AU) in single and binary component systems. In the single component systems, AlMCM-41 represents higher adsorption capacity for MB than AU with the maximal adsorption capacity of 2.07×10−4 and 1.15×10−4 mol/g at 25 ˚C for MB and AU, respectively. In the binary component system, MB and AU exhibit compe...

متن کامل

Removal of crystal violet and methylene blue from aqueous solutions by activated carbon prepared from Ferula orientalis

Ferula orientalis L. stalks were used as an agricultural solid biomass waste for preparation of activated carbon with zinc chloride activation using slow pyrolysis in a fixed-bed reactor. The chemical characteristics of the activated carbon obtained at 550 C were identified by elemental, fourier transform infrared spectroscopy, Brunauer–Emmett–Teller, scanning electron microscopy analyses and f...

متن کامل

Column operation studies for the removal of dyes and phenols using a low cost adsorbent

Fertilizer plant waste carbon slurry has been investigated after some processing as an adsorbent for the removal of dyes and phenols using columns. The results show that the carbonaceous adsorbent prepared from carbon slurry being porous and having appreciable surface area (380 m2/g) can remove dyes both cationic (meldola blue, methylene blue, chrysoidine G, crystal violet) as well a...

متن کامل

Removal of Brilliant Green and Crystal violet from Mono- and Bi-component Aqueous Solutions Using NaOH-modified Walnut Shell

In the present work, the simultaneous determination of Brilliant green (BG) and Crystal violet (CV) dyes with overlapped absorption spectra in binary mixture solution, was carreid out using the partial least squares (PLS) and direct ortogonal signal correction-partial least squares (DOSC-PLS) methods. The results obtained indicate that by applying DOSC on the calibration and prediction data for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013